Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion.
نویسندگان
چکیده
Three of the Type III-secreted effectors of Pseudomonas aeruginosa (ExoS, ExoT, and ExoY) each alter mammalian cell morphology in culture without causing a loss of cell viability. For ExoS and ExoT this property involves RhoGAP activity, and leads to actin cytoskeleton disruption and a reduced capacity for internalizing bacteria. ExoY does not possess RhoGAP activity. Instead, cell rounding depends upon its adenylate cyclase catalytic region. Since anti-phagocytic activities of ExoS and ExoT are associated with cell rounding and cytoskeleton disruption, we hypothesized that ExoY would also inhibit P. aeruginosa invasion of epithelial cells coinciding with adenylate cyclase-mediated cytoskeleton disruption. The results showed actin disruption of epithelial cells at 2 h post-infection associated with both adenylate cyclase-active ExoY and its catalytic mutant form ExoYK81M, and which coincided with inhibition of bacterial invasion (76% inhibition by ExoY, and 37% by ExoYK81M). Surprisingly, at 4h post-infection, neither form of ExoY inhibited invasion despite extensive actin disruption. These data suggest that ExoY, like ExoS and ExoT, contains more than one active domain affecting mammalian cell function. The data also suggest that cytoskeleton disruption does not necessarily predict invasion inhibitory activity, supporting the recently proposed model that P. aeruginosa internalization can proceed through more than one pathway.
منابع مشابه
فراوانی ژنهای کد کننده سیتوتوکسینهای exoT، exoY، exoS وexoU سیستم ترشحی تیپ 3 در سودوموناس آئروجینوزا جدا شده از بیماران سوختگی
Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial burn infections. Disease results from the production of numerous virulence factors, some of which are injected directly into the eukaryotic host cells via the type III secretion system (T3SS).The aim of this study was to determine the prevalence of cytotoxins encoding exoT, exoY, exoS and exoU genes...
متن کاملActin activates Pseudomonas aeruginosa ExoY nucleotidyl cyclase toxin and ExoY-like effector domains from MARTX toxins
The nucleotidyl cyclase toxin ExoY is one of the virulence factors injected by the Pseudomonas aeruginosa type III secretion system into host cells. Inside cells, it is activated by an unknown eukaryotic cofactor to synthesize various cyclic nucleotide monophosphates. ExoY-like adenylate cyclases are also found in Multifunctional-Autoprocessing Repeats-in-ToXin (MARTX) toxins produced by variou...
متن کاملPseudomonas aeruginosa Exotoxin Y-Mediated Tau Hyperphosphorylation Impairs Microtubule Assembly in Pulmonary Microvascular Endothelial Cells
Pseudomonas aeruginosa uses a type III secretion system to introduce the adenylyl and guanylyl cyclase exotoxin Y (ExoY) into the cytoplasm of endothelial cells. ExoY induces Tau hyperphosphorylation and insolubility, microtubule breakdown, barrier disruption and edema, although the mechanism(s) responsible for microtubule breakdown remain poorly understood. Here we investigated both microtubul...
متن کاملThe Pseudomonas aeruginosa ExoY phenotype of high-copy-number recombinants is not detectable in natural isolates
The nucleotidyl cyclase ExoY is an effector protein of the type III secretion system of Pseudomonas aeruginosa We compared the cyclic nucleotide production and lung disease phenotypes caused by the ExoY-overexpressing strain PA103ΔexoUexoT::Tc pUCPexoY, its vector control strain PA103ΔexoUexoT::Tc pUCP18, its loss-of-function control PA103ΔexoUexoT::Tc pUCPexoY K81M and natural ExoY-positive an...
متن کاملParadoxical cAMP-induced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY.
Mammalian transmembrane adenylyl cyclases synthesize a restricted plasmalemmal cAMP pool that is intensely endothelial barrier protective. Bacteria have devised mechanisms of transferring eukaryotic factor-dependent adenylyl cyclases into mammalian cells. Pseudomonas aeruginosa ExoY is one such enzyme that catalyzes cytosolic cAMP synthesis, with unknown function. Pseudomonas aeruginosa genetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology letters
دوره 250 1 شماره
صفحات -
تاریخ انتشار 2005